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RBsurn-Nous dkveloppons un meddle qui rend compte de I’tvolution thermique d’un liquide et du solide 
form6 au tours de la solidification. Ce moddle prend en compte les variations des proprittk physiques et 
thermodynamiques du liquide surchauffk (isotherme ou non B I’instant initial) et du solide en fonction de la 
tempirature. A I’itat liquide la gtomktrie du systtme est celle d’une sphere pleine. On passe B une sphere 
creuSe lors de la transition liquide-solide (augmentation de la masse volumique). La ksolution s’effectue 
g&e i un schCma implicite aux diffkences finies et i un maillage B pas d’espace variable avec deux frontikres 

mobiles se dtplapnt en sens inverse. 
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NOMENCLATURE 

capacitl calorifique ; 
diam6tre de la sphere; 
accCllration de la pesanteur ; 
nombre de Grashof; 
coefficient de transfert ; 
conductivitl thermique ; 
chaleur latente; 

masse ; 
nombre de points du maillage; 
nombre de Nusselt ; 

nombre de Nusselt moyen ; 
nombre de Prandtl; 
position d’un point du maillage; 
pas d’espace ; 
rayon de la bulle; 
rayon extlrieur ; 
rayon de solidification ; 
vitesse de d&placement du rayon de la bulle ; 
vitesse de dlplacement du front de 
solidification ; 
temps ; 
templrature ; 
tempkrature initiale; 
templrature ambiante ; 
temperature de film ; 
templrature de fusion ; 
tempkrature de la surface de la sphtke ; 
vitesse du liquide; 
position d’un point du maillage; 
pas d’espace. 

Lettres grecques 

& tmissivitC totale; 

V, viscositl cinkmatique ; 

PP masse volumique ; 
0, constante de Stephan ; 
0. T - T,. 

Indices 

F, fusion ; 

I;, 
varie de 1 + N; 
milieu du maillage; 

L, liquide ; 
S, solide. 

1. INTRODUCTION 

L)eTUDEdU refroidissement avec changement de phase, 
a fait l’objet de nombreux travaux [l-23], dont un 
grand nombre sont consacrks si la rCsolution thkorique 
de ce type de probkme. La mkthode de rlsolution est 
selon le cas, exacte, variationnelle, perturbationnelle, 
intkgrale, purement numkique. Elle s’applique g&k- 
ralement i des systkmes i gkomltrie unidimensionnel- 
le et i propriltls physiques constantes. Dans l’immen- 
se majorit de ces travaux, le liquide est initialement 5 
la tempkrature de fusion. 

Notre travail a pour but de diterminer, I’histoire du 
refroidissement de particules sphlriques dont la tem- 
pkrature initiale est homogene ou non et comprise 
entre la templrature de fusion ( TF) et (T, + 350 K). 

Nous considlrons que toutes les propriltls physi- 
ques ou thermodynamiques sont des fonctions conti- 
nues ou discontinues de la temperature. Nous appli- 
quons notre modele au cas de particules d’alumine 
(Al,O,) dont les propriCk% sont connues en fonction 
de la templrature. Nous examinons le comportement 
de particules sphkriques dont la taille est comprise 
entre 20pm et quelques mm. L’intlrtt au niveau des 
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plus faibies granulom&ries se manifeste dans Ie domai- 
ne de ta projection par plasma. 

Pour rksoudre notre probldme, nous utilisons la 
mkthode i pas d’espace variable proposle par Murray 
et Landis [24], mais avec deux frontkkres mobiles, I’une 
like i la progression du front de solidification, I’autre 
liic ii I’augmentation de volume d’une bulk situle au 
centre de la sphere. L’existence de cette bulk est Iile B 
la discantinuitl de la masse volumique iors du change- 
ment de phase. 

Du fait de la taille relativement rlduite des particules 
sphiriques, nous nCgfigeons le pht%omBne de convec- 
tion natureile. En coordonnkes sphdriques, I’equation 
de la chaleur s’lcrit 

Lavariation du rayon R,en fonction de la tempkature 
s’exprime ii partir de 

/ 

‘R, 
M = 4n pr’dr. (2) 

$0 

Les conditions aux Iimites sont 
une condition de symltrie 

a- 
ar r=O= 0 

une condition de flux radiatif et convectif ti la surface 
L’Cquation de la conduction s’exprime 
pour le solide 

Aux tempiratures considireks. h(T, - T,,) est un 
terme correctif, que I’on peut estimer ;i partir de [26] 

Nu = 2 f 0.60 Pr’ 3 Gr' 4. 
pour ie liquide 

En raison de I&art important entre la tempdrature de 
surface du rnat~rjau et celle du gaz, ~expressio~ du 
Grashof est dorm& par [27] 

(3) 

avec 

T + T,, ~~~~~ = .__E__L 
. 

2 
et v pros a TEii,. 

Dans ces conditions le nombre de Grashof est proche 
de z&o et le nombre de Nusselt peut-&tre pris &gal i 2. 
Cette approximation se justifie d’autant plus que Ies 
sphires sont de petites tailles [27f, 

la conductivitk thermique de l’air varie sensiblement 
entre T,, et T,. Nous utilisons [28] 

Comme condition initiale nous utiiisons 

T = T, d t=0, 

OU 

‘I- =ftr) i t=o, T>T,. 

2.2. Domaine hiphasi 

Lors du refroidissement d’un corps pur, on constate 
l’existence d’un palier de solidification [2.5], le solide 
form& reste done, pendant un certain temps. si une 
tempkrature T ~lr T,, la densit pcut done &re 
considdrCe comme constante. Le rayon extkrieur de la 
sph&e ne varie pas au cows de la solidi~cation. Nous 
rkgligeons les dkformations dues aux contraintes. 
Pour tenir compte de ~augmentat~on de masse volumi- 
que lors de la transition Equide-solide, nous introdui- 
sons un vide au centre de la sph&e (Fig. 1). 

L’Cquation de continuiti pour le liquide s’krit 

La conservation de la masse s’exprime globaiement 

par 
CR, 

J 
“& 

pL r2 dr + .I ps r2 dr = cte. 
& R, (6) 

Ii Gent 
kquation (5) + lquation (6) - pr”c 

= h.r - ~s)R:h- - 1’: dr. (7) 

Ces deux equations sent coupldes & l’interface liqui- 
de-solide par 

Les conditions aux iimites sent les suivantes: 
(i) Pour R = R, on nlgtige la tension de vapeur, cx 

qui entraine l’adiabaticit~ 

(ii) A lkterface iiqu~de-so~~de, nous awns une 
condition thermodynamique 

7’s = T, = TV. (12) 

A la surface, la condition de flux suivante: 

Kc 
1 

T, - T,t+S, i 

T* 
KfTfdT. 

T,, (4) 
rr R=R, 

= am-,4 - T&J i- h(T, - T,,). 

(13) 
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1 Liquide 
2 Solide 
3 Vide 

FK. 1. Gdomltrie de la particule Li des instants differents. 

L’ensemble de ces equations r&it notre probleme, 
pour le rt%oudre nous sommes amenis a affecteur un 

certain nombre de changements de variable. 

3. ANALYSE NUMERIQUE 

Pour traiter ce probleme, nous utilisons la methode 
spas d’espace variable proposke par Murray et Landis 

[24]. Dans notre cas nous avons deux front&es 
mobiles (R, et RF). Le modele de maillage utilise est 

presente sur la Fig. 2. 

equation de la c~n~iuction dans le solide 
Le maillage est une fonction du temps, c’est-a-dire 

de R,. 

1 

r - RF 
Nous posons : +=m* 

7 = t, 

?T, i-T, 1 I=----- 
& &RE-RF’ 

L’e’quation (8) devien t 

2 T, 1 

-SF= PC&R, - RA2 

Fi2T, + SK clT, 

L3,x; (3xs csx, 

(1 - x,1& 2Ts 
T. (14) 

R, - RF cxs 

Equation de la conduction pour le liquide 
Le maillage varie avec R, et R,. 

I 

r - R, 
XL = -----, 

RF - R, 

r = t, 

dT, ST, 1 _=_- 
Zr ax, R, - R, 

dT, 8T, dT, (1 - xr,)Rc + xLRF 

-&- = ar 
-- 

ax, RF-R, ’ 

L’equation (9) devient 

s- 1 
_- 

a7 PC&& - R,)’ 

1 
+ .____‘TL [X‘R, - (1 - XL)& - 01, 

R, - Rc dx, 
(15) 

Equation de couplage d /‘interface liquide-solide 

I 

r - R, 
xL = R,--R, 

r=T 

L’equation (7) devient 

i s R, s 
y = @LX - PSW: RF f rd&. 

, at 

-.I b r2 gL fw - XL) + XL% dr x (pr’)-‘. Y SXL RF - R, 1 (16) 
4. RESOLUTION NUMERIQUE 

La resolution numerique de notre systeme s’effectue 

par un schema imphcite aux diffkrences finies. 
~utilisation dune variable H = T - T, permet 

d’augmenter la precision des calculs. 
Nous rempiapns 

3 1 
x par 

( )(t,i+l) - ( Xr.i-1) 

2Ax ’ 

1 2 3 4 5 5 7 8 9 %X9 

d' ’ ’ ’ ’ ’ ’ ’ ’ ’ a4 
FIG. 3. Maillage systdme monophasket maiilage associl pour 

le domaine biphai. FIG. 2. Maillage aux instants t + fdt et f + pdr. 
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Nous utilisons une approximation parabolique pour 
les conditions aux limites 

so / 
$ IRE” = 0 = 40, - 30, - @, 

R=k, 
(au centre), 

_,C! 5 -R,,, 4R,‘+, - 38, + H,v_, - 
cr R=K, 2AR 

(pour une phase unique), 

- I( 8s / - K(N) 40,_ 1 - 30, + B,_, =--------- 
R,%&+ R, - R, 2Axs 

(pour le domaine biphase). 

La condition radiative i la surface, necessite une 
methode de relaxation du type 

T,,- I .'I? +P=w(T"- T;,) 

+ h(T - Td -+ Tw,* 

T,:_,,,= ..-+i'+ T,,,,,+.... 

quatre iterations suffisent pour arriver si la 
convergence. 

L’equation de couplage a l’interface, equation (lo), 
est exprimee en utilisant une approximation paraboh- 
que, soit 

40,_, - u,_, ____- 
2A.u, 1 

Dans l’equation de continuite (16), les deux integrales 
sont des termes correctifs que nous calculons par la 
methode des trapezes. 

5. PASSAGE DU SYSTEME MONOPHASE AU 
SYSTEME BIPHASE 

Des ~apparition de solide & la surface, on passe dun 
systeme monophase (liquide) a un systeme biphase. II 
est done necessaire i partir du maillage du systeme 
monophase de definir un nouveau maillage dont le 
noeud median correspond ri I’interface liquide-solide 
(Fig. 3). 

Pour connaltre la temperature en chaque point du 
nouveau maillage dans le liquide, nous utilisons une 
approximation polynomiale du 3Pme degre du champ 
de temperature. Dans le solide une approximation 
parabolique entre T, et T, nous parait plus justifiee. 
L’erreur que nous commettons en utilisant I’approxi- 
mation pllynomiale est neghgeabIe ( <0.05%). 

Cette methode donne un exceflent resultat, nean- 
moins, nous ne pouvons commencer la reso- 
lution numerique dans le domaine biphase, si la tem- 
perature de fusion est trop proche de la temperature 
de la surface. Dans notre cas, avec 18 pas d’espace, la 
resolution numerique est instable si l’interface se situe 
a moins de AR/12 de la surface. 

FIG 4. Maillage en fin de solidification. 

2300 RE ccm, 

0 ’ 6 ’ ’ , 1 .02 ’ ’ 1 .rJ3 .k ’ 

Fro. 5. Profil de tempdrature dans la sph6re lorsque la surface 
atteint T,. 
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Fro 6. Evolution de la temperature du centre et B la surface 
de la sphire en fonction du temps. 

Lorsque la sphere devient entierement solide (Fig. 4) 
nous n’avons aucun probleme de stabilite au centre. 
Now arretons la resolution lorsque R, - R, devient 
negligeable devant RE. 
Les conditions de depart pour la resolution du 

domaine biphase, jouent un role considerable sur la 
stabilite du schema. 

6. PREMIERS RESULTATS 

Nous donnons ici qu’un exemple correspondant i 
une sphere d’alumine (AI,O,) de diametre 1 mm, et 
dont la temperature initiale est homogene et Cgale i 
2700 K. 

Sur la Fig. 5, nous avons represente le profil de 
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FIG. 7. Yitesse du rayon de fa bufti;, 

Fttz 8. Vitcsse du front de ~o~jdi~c~t~~~, (1 f Iorsque la masse 
volumiqut Cst constanta, (2) lorsque la masse volumique est 

variable. 

Les conditions aux Ximites du syst~rne~ de ~~~rn~trie 
sph~riqu~~ sent dea conditions de flux rad~atif et 
conduct8 vers I’ambiance. 
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SOLIDIFICATION OF SUPERHEATED LIQUID SPHERES 
WITH TEMPERATURE DEPENDENT PROPERTIES 

Abstract-Thermal evolution of liquid and solid deposited during the solidification of spherical droplets of 
liquid, isothermal or not isothermal at 1 = 0, is calculated. Physical and thermodynamical properties of the 
two phases depend on temperature. Due to the increasing density at the liquid-solid transition, the system 
geometry becomes that of a hollow sphere. To obtain the solution of the mathematical model, an implicite 
finite difference scheme taking into account a variable space network with two boundaries moving in 

opposite directions, is used. 

ER~TARR~NG VON ~BERHIT~TEN FLUSSIGEN KUGELN MIT 
TEMPERATURABH~NGIGEN STOFFWERTEN 

Zusammenfassung-Es wird der Temperaturverlaufvon fliissigem und festem Material, das sich wahrend der 
Erstarrungvon sphgrischen fliissigen Tropfen absetzt, bei isothermen und nicht-isothermen Bedingungen bei 
r =0 berechnet. Die physikalischen und thermodynamischen Eigenschaften der beiden Phasen sind 
temperaturabhgngig. Durch die gr613er werdende Dichte beim Phasenwechsel fliissig/fest entwickelt sich die 
Systemgeometrie zu einer Hohlkugel. Urn die LGsung des mathematischen Modells zu erhalten, wird ein 
implizites Differenzenverfahren mit einem variablen, r%umlichen Netz und zwei Berandungen, die sich in 

entgegengesetzter Richtung bewegen, verwendet. 

3ATBEPaEBAHWE C@EPMLiECKMX KAl-IEJIb nEPEI-PETOfi mMflKoCTM C 
3AB~C~~~M~ OT TEMIIEPATYPbI CBOi%JTBAMM 

AHHOTa~U-PaCCY~TaHO ~3MeHeH~e Tehfflepalypbt xwxocrki If wepnoro 0canKa npu ~aTBepne8aH~~ 
c&pfirecKAx xanenb ~3oTep~~qecKo~ wnsi He~3oTepM~qec~o~ xuaxocrM (npu I = 0). ~~3~~ecKHe 
ii ~ep~o~~~aM~~ec~~e xapaKTeprrcTuxu nsyx +a3 3aBHcsT 0T i-eMnepaTypbt. kis-3a yeens4emfs 
imoi-H*cT~ aemecT8a nprr nepexone ~3 x~~oro a raepnoe cocTosHHe 06pasyroTcn Tena T5ina c+epbr 
Xonnoy. ,@n nonyremfa peweam 3anavu npweHseTcz cxebfa c nepeivewiotui TpexMeptiok ce-raok 

a KoTOpOfi RCnOnb3ymTCfi aae nepeMe1tiammHeCX B npOTHBOno~ox(Hblx Hanpa8neHHnx rpaHnubl. 


