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Résumé—Nous développons un modéle qui rend compte de I'évolution thermique d’un liquide et du solide

formé au cours de la solidification. Ce modéle prend en compte les variations des propriétés physiques et

thermodynamiques du liquide surchauffé (isotherme ou non 4 I'instant initial) et du solide en fonction de la

température. A I'état liquide la géométrie du systéme est celle d'une sphére pleine. On passe 4 une sphére

creuse lors de la transition liquide-solide (augmentation de la masse volumique). La résolution s'effectue

grace a un schéma implicite aux différences finies et 4 un maillage 4 pas d’espace variable avec deux frontiéres
mobiles se déplacant en sens inverse.

NOMENCLATURE
C,, capacité calorifique ;
d, diamétre de la sphere;
g, accélération de la pesanteur;
Gr, nombre de Grashof;
h, coefficient de transfert;
K, conductivité thermique;
L, chaleur latente;
M, masse ;
N, nombre de points du maillage;
Nu, nombre de Nusselt;
Nu, nombre de Nusselt moyen;
Pr, nombre de Prandtl;
r, position d’un point du maillage;
Ar, pas d’espace;
R,, rayon de la bulle;
Rg, rayon extérieur;
R, rayon de solidification;
R., vitesse de déplacement du rayon de la bulle;
R, vitesse de déplacement du front de
solidification ;
t, temps ;
T, température ;
Ty, température initiale;
Taw», température ambiante;
Tem  température de film;
Tk, température de fusion;
T, température de la surface de la sphere;
v, vitesse du liquide;
X, position d’un point du maillage;
Ax, pas d’espace.

Lettres grecques
& émissivité totale;
v, viscosité cinématique;
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P, masse volumique;
a, constante de Stephan;
0, T - Tg
Indices
F, fusion;
i, variede 1 - N;
K, milieu du maillage ;
L, liquide ;
S, solide.

1. INTRODUCTION

L’étupEedu refroidissement avec changement de phase,
a fait 'objet de nombreux travaux [1-23], dont un
grand nombre sont consacrés a la résolution théorique
de ce type de probléme. La méthode de résolution est
selon le cas, exacte, variationnelle, perturbationnelle,
intégrale, purement numérique. Elle s’applique géné-
ralement a des systémes d géométrie unidimensionnel-
le et d propriétés physiques constantes. Dans 'immen-
se majorité de ces travaux, le liquide est initialement a
la température de fusion.

Notre travail a pour but de déterminer, l'histoire du
refroidissement de particules sphériques dont la tem-
pérature initiale est homogéne ou non et comprise
entre la température de fusion (Tg) et (T + 350K).

Nous considérons que toutes les proprictés physi-
ques ou thermodynamiques sont des fonctions conti-
nues ou discontinues de la température. Nous appli-
quons notre modéle au cas de particules d’alumine
(A1,03) dont les propriétés sont connues en fonction
de la température. Nous examinons le comportement
de particules sphériques dont la taille est comprise
entre 20 um et quelques mm. L'intérét au niveau des
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plus faibles granulométries se manifeste dans le domai-
ne de la projection par plasma.

Pour résoudre notre probléme, nous utilisons la
méthode a pas d'espace variable proposée par Murray
et Landis [24], mais avec deux frontiéres mobiles, 'une
lige 4 la progression du front de solidification, I'autre
lide 4 Paugmentation de volume d’une bulle située au
centre de la sphére. L'existence de cette bulle est lide @
la discontinuité de la masse volumique lors du change-
ment de phase.

2. POSITION DU PROBLEME

2.1. Phase unique
Du fait de la taille relativement réduite des particules
sphériques, nous négligeons e phénomeéne de convec-
tion naturelle. En coordonnées sphériques, 'équation
de la chaleur s'écrit
T
aT)‘

¢Too1 0

C, = Kr? 1
Poeer T2 Dr( M

Lavariation durayon Rgen fonction de la température

s'exprime & partir de

"R,

M=4n| pridr )

s
Les conditions aux limites sont
une condition de symétrie

oT

or =0

r=0

une condition de flux radiatif et convectif 4 la surface

aT
~K—

= go(T3 —
or P

R=R,

Thw) + WT, — Tau)

Aux températures considérées, AT, — Tap) cst un
terme correctif, que I'on peut estimer 4 partir de [26]

Nu =2+ 060 Pr 3G

En raison de Pécart important entre la température de
surface du matériau et celle du gaz, Uexpression du
Grashof est donné par [27]

o P9, = Ta)
v? T it 3)
avec
Tritm = — Tam epy pris 3 Teme

2

Dans ces conditions le nombre de Grashof est proche
de zéro et le nombre de Nusselt peut-étre priségald 2.
Cette approximation se justific dautant plus que les
sphéres sont de petites tailles [27],

la conductivité thermique de l'air varie sensiblement
entre Ty et T,. Nous utilisons [28]

_ 1 T
K= w——j K(ndT.
Tam

T, — Tan “4)
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Comme condition initiale nous utilisons
T =T, a =09,
ou
T = f(r) a

2.2, Domaine biphase

Lors du refroidissement d’un corps pur, on constate
Pexistence d'un palier de solidification [25], le solide
formé reste dong, pendant un certain temps, @ une
température T =~ Ty, la densité peut donc étre
considérée comme constante. Le rayon extérieur de la
sphére ne varie pas au cours de la solidification. Nous
négligeons les déformations dues aux contraintes.
Pour tenir compte de Faugmentation de masse volumi-
que lors de la transition liquide-solide, nous introdui-
sons un vide au centre de la sphére (Fig. 1).

Léquation de continuité pour le liquide s'écrit

t=0, T> T

("p 1
P ﬁo (Pr v} =
&t

5)

La conservation de la masse s'exprime globalement

par
PR, °R,
JR( purtdr+ LE psridr = cte. ©
H vient
équation (5) + équation (6) = pr¥v
4
5 2 €
= (orr — Ps)RE R = f re —/-) dr. (7)
Ry
L'équation de la conduction s'exprime
pour le solide
éfry 12 Ty
C = o T Kg? 3
L 28(3" P ®)

pour le liquide
')TL

¢
p "( ér or

Ces deux équations sont couplées a Vinterface liqui-

de-solide par
1 AT 0T
= [Ks (‘J) - Kq (f«:-‘:) ] (10)
ol or Jg, or Jg,
Les conditions aux limites sont les suivantes:

(i) Pour R = R, on néglige la tension de vapeur, ce
qui entraine 'adiabaticité

Re

(1)

R =R,
(ii} A Tinterface liquide-solide, nous avons une

condition thermodynamique

Te=T, = Tp. (12)
A la surface, l1a condition de flux suivante:
PT & 4
— K e = go(Ty — Tam) + WT, — Tan)
cr R= R,
{13)
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R Rr
S/
Yal
h’ -
t t +pdt Re
1 Liquide
2 Solide
3 Vide

FiG, 1. Géométrie de la particule 4 des instants différents.

L’ensemble de ces équations régit notre probléme,
pour le résoudre nous sommes amendés a affecteur un
certain nombre de changements de variable.

3. ANALYSE NUMERIQUE

Pour traiter ce probléme, nous utilisons la méthode
dpas d’espace variable proposée par Murray et Landis
[24]. Dans notre cas nous avons deux frontiéres
mobiles (R et Rg). Le modéle de maillage utilisé est
présenté sur la Fig. 2.

Equation de la conduction dans le solide
Le maillage est une fonction du temps, cest-a-dire
de R..

. b RF
Nous posons: Xs = Re — R’
T =1,
Tg Ty 1
ér  0xg Rg — Rg’
6Ty Ty  0Ts Rl — xg)
ot xg Rg— Ry’

L’equation (8) devient
oTs 1 Ty
ot pCuRg — ReP? | oxd
ZKME—RHGRJ
.+_ —_—— T
r Oxg

0K ¢Ty
Oxg Oxg
{1 - xS)RF aTs
Rg — Ry Oxg’

(14)

Equation de la conduction pour le liquide
Le maillage varie avec R et R.

_r—R¢
" Ry - R’

Rr .
Re .
12345678 9KN123uE6178
| llllllllllllllllll?
Re
_Re -
e B

FiG. 2. Maillage aux instants ¢ + fdret ¢ + pdr.
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or, 0T, i
or  dxy Rg — Re
aTL _ BTL _ 91[:(1 - xL)RC + ‘xLRF
ot ot Ox Rr — Re
L’équation (9) devient
oT, 1
a7t pCyRe — ReY’
0T dK 8T, 2K{(Rg — R 0T
xK‘;+‘aL+ﬁLLwQ;£
6x{  0xp Oxy, r 0xy,
1 0T,
I R. — (1 — x)Re — v].
RF — RC axL [XL F L) ¢ ]

(15)
Equation de couplage d l'interface liquide~solide
_r-= R¢
R R
T=1

L’équation (7} devient

Ry

é
v= [(,OL.F ~ ps)RE Re + JA ”Z%d"

>

fRF rl(z&RC(l - x) + xR

6XL RF — RC

i dr] x (pri)~ L.
(16)

4. RESOLUTION NUMERIQUE

La résolution numérique de notre systéme seffectue
par un schéma implicite aux différences finies.

Lutilisation d’une variable 8§ = T — T permet
d’augmenter la précision des calculs.

Nous remplacgons

016_ par (x‘i)_e(t—l i)
ot At ’
a ) par Ceivy = Cheimn
ax 2Ax ’
‘iaf par iy = 2600 + i)
ox? Ax?
1 2 34 85 7 8 98 101N 121B3KRBIWKY B
TN TN T O O O A N I
Re .
1 2 3 4 5 6 7 8 9 0B
I%l ] 1 1 | i1 L1 M
i
Re .

Fi6. 3. Maillage systéme monophasé et maillage associé pour
Ie domaine biphasé.
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Nous utilisons une approximation parabolique pour
les conditions aux limites

OF _0=46,-9, -6,
& lgeo
Rk (au centre),
e 48, — 38+ 0,
- A& = - K
& pog, 2AR
(pour une phase unique),
~K | _ —K(N) 48y, =305+ 0,4,

2Axg

(pour le domaine biphasé).

Rg — Rp 0xg *R:RE Rg — Ry

La condition radiative 4 la surface, nécessite une
méthode de relaxation du type

To-1.m—= P=e(T* = Thy)
+ (T — Tam) = Ty~

T 1 m=023T, n+ 075T_y o P=Tyn—

T = = P>T,y=....
quatre itérations suffisent pour arriver a la
convergence.

L’équation de couplage 4 l'interface, équation (10),
est exprimée en utilisant une approximation paraboli-
que, soit

R _l Ky
F-I)SL Rg — R

4, O Ky
Re - Rc

2Axg

40, — GH}

2Axy

Dans I'équation de continuité (16), les deux intégrales
sont des termes correctifs que nous calculons par la
méthode des trapezes.

5. PASSAGE DU SYSTEME MONOPHASE AU
SYSTEME BIPHASE

Dés Papparition de solide 4 la surface, on passe d’'un
systéme monophasé {liquide) a un systéme biphasé. Il
est donc nécessaire d partir du maillage du systéme
monophasé de définir un nouveau maillage dont le
noeud médian correspond a l'interface liquide—solide
{Fig. 3).

Pour connaitre la temperature en chaque point du
nouveau maillage dans le liquide, nous utilisons une
approximation polynomiale du 3éme degré du champ
de temperature. Dans le solide une approximation
parabolique entre T et T, nous parait plus justifiée.
L'erreur que nous commettons en utilisant I'approxi-
mation pllynomiale est negligeable ( <0.05%).

Cette méthode donne un excellent résultat, néan-
moins, nous ne pouvons commencer la réso-
lution numerique dans le domaine biphasé, si la tem-
pérature de fusion est trop proche de la température
de la surface. Dans notre cas, avec 18 pas d’espace, la
résolution numerique est instable si U'interface se situe
4 moins de AR/12 de la surface.
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F1c. 4. Maillage en fin de solidification.
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F1G. 5. Profil de température dans la sphére lorsque la surface
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Fic. 6. Evolution de la température du centre et 4 la surface
de la sphére en fonction du temps.

Lorsque la sphére devient entiérement solide (Fig. 4)
nous n’avons aucun probléme de stabilité au centre.
Nous arretons la résolution lorsque Ry — R devient
négligeable devant Rg.

Les conditions de départ pour la résolution du
domaine biphasé, jouent un réle considérable sur la
stabilité du schéma.

6. PREMIERS RESULTATS

Nous donnons ici qu'un exemple correspondant a
une sphére d’alumine (Al,O;) de diamétre 1 mm, et
dont la température initiale est homogeéne et €gale 4
2700K.

Sur la Fig. 5, nous avons représenté le profil de
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ﬁ{: fem/ s}

st
g ¥ T T T T i
A 2 3 4 .5

Fii. 7. Vitesse du rayon de la bulle,

température dans la sphére lorsque la fempérature de
surface est égale & Ty, soit aprés un temps de 9.5 x
107 % 3. La Fig. 6 donne évolution de la tompérature,
aux surfaces intéricure ot extéricure de la particule en
fonetion du temps, Nous avons représente sur la Fig. 7,
la vitggse d'augmentation du rayon de la bulle en
fonction du temps.

Sur la Fig. 8, nous donnons la vitesse d'évolution du
front de sokidification dans les deux cas suivants:

(i} toutes les propriétes physiques ou thermodyna-
miques sont des fonctions de la température (courbe
2k

{ii} toutes les proprietés sont variables 4 Pexception
de la densité qui est considérée comme constante
{courbe 1)

Drans ce second cas, nous avons pris p = ofg =
Parook. La vitesse d'évolution du front de solidifica~
tion, peut se partager en deux zones, lune gorrespond
au refroidissement du liquide, Pautre 4 la solidification,

En raison de 'augmentation de masse volumique 4
Ia transition Hquide-solide, nous avons admis, pour
qu’il ¥ ait conservation de la masse, la formation d'un
vide (bulle) au centre de la sphére. Pour une particule
fiquide sphérique de 1 mm de diamétre 4 2700K on
obtignt 4 2326 K (fin de solidification) unc sphére
creuss de 0.955 mm de diameétre extérieur ¢t 0.547 mm
de digmétre intérieur,

Pour une telle particule la vitesse de refroidissement
du hguide 4 Ia surface et au coeur enire 2700K ot Ty
est respectivement de 4000K "' s et 2873 K 572

7. CONCLUSION

Newrs avons développé un modéle pour e cakeul de
Pévolution thermigue, en fonction du temps, dun
liquide surchauffé (isotherme ou non 4 Pinstant initial)
ainsi que du solide déposé au cours de la solidification ;
i prend en compte les propriétés physiques et thermo-
dynamiques du liquide et du solide en fonction de ia
température.
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T RP constant
-8 2:0 variahls

Retemes)

Fic. 8. Vitesse du front de solidification, {1} lorsque In masse
volumique st constante, {2) lorsque la masse volumique est
variable.

Les conditions aux limites du systéme, de géométrie
sphérique, sont des conditions de flux radiatif et
conductif vers Fambiance.
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SOLIDIFICATION OF SUPERHEATED LIQUID SPHERES
WITH TEMPERATURE DEPENDENT PROPERTIES

Abstract—Thermal evolution of liquid and solid deposited during the solidification of spherical droplets of

liquid, isothermal or not isothermal at t = 0, is calculated. Physical and thermodynamical properties of the

two phases depend on temperature. Due to the increasing density at the liquid-solid transition, the system

geometry becomes that of a hollow sphere. To obtain the solution of the mathematical model, an implicite

finite difference scheme taking into account a variable space network with two boundaries moving in
opposite directions, is used.

ERSTARRUNG VON UBERHITZTEN FLUSSIGEN KUGELN MIT
TEMPERATURABHANGIGEN STOFFWERTEN

Zusammenfassung—Es wird der Temperaturverlaufvon fliissigem und festem Material, das sich wihrend der

Erstarrung von sphérischen fliissigen Tropfen absetzt, bei isothermen und nicht-isothermen Bedingungen bei

t=0 berechnet. Die physikalischen und thermodynamischen Eigenschaften der beiden Phasen sind

temperaturabhingig. Durch die gréBer werdende Dichte beim Phasenwechsel fllissig/fest entwickelt sich die

Systemgeometrie zu einer Hohlkugel. Um die Lésung des mathematischen Modells zu erhalten, wird ein

implizites Differenzenverfahren mit einem variablen, raumlichen Netz und zwei Berandungen, die sich in
entgegengesetzter Richtung bewegen, verwendet.

3ATBEPJIEBAHUE COEPUYECKWUX KAITEJb IMEPETPETOM XHUJIKOCTH C
3ABHCSIIMMU OT TEMITEPATYPbI CBOMCTBAMU

Aunnoramns-—PacCyHTaHO M3MEHEHHE TEMACPATYPH! KHAKOCTH H TBEPAOTO OCAJKA NPH 34TBEPIACBAHMH

ClheprYECKHX Kanesib M3OTEPMHYECKOH WM HewsoTepMuueckoif xuaxoctu (npu ¢ = 0). Pusuueckne

¥ TEPMOAMHAMMWYCCKHE XapPAaKTCPHCTHKHM ABYX ¢a3 3aBucaT OT Temnepatypui. Mi3-3a yseauuenus

fIOTHOCTH BEILECTBa NPH NEPEXOE M3 KHIKOro B TBEPAOE COCTOSHHE o0pa3yioTCs Tena TMna chepsl

Xonnoy. Ans nonyueHus pElICHHA 3aaYH IPHMCHAETCHE CXeMa C NEPEMEHHOR TPEXMEPHOW CEeTKOH,
B KOTOPO# HCIIONIL3YIOTCS [BE NEPEMEILAIOIHECH B IPOTHBONOJOXHLIX HANPABIEHHAX FPAHUIILL.



